Reflection Summary for September 20, 2011

Compare and Contract the QCR and Pearson's Correlation Coefficient
QCR
*Resistant to outliers
*Does not consider distance between data point and mean
*QCR is a good approach for leading students to Pearson's CC
*Could show false measures +/-1 for goodness of fit; i.e., QCR could be +-1 even if not perfectly linear

* $\mathrm{QCR}=[\mathrm{n}(\mathrm{Q} 1)+\mathrm{n}(\mathrm{Q} 3)-\mathrm{n}(\mathrm{Q} 2)-\mathrm{n}(\mathrm{Q} 4)] / \mathrm{n}$
*Easier for students to grasp or understand (more intuitive \& easier to calculate)
*"How many"

Pearson CC

*Sensitive to Outliers
*DOES consider the distance between data point and mean
$\mathrm{r}=[$ SUM (product of z scores for x, y coordinates) $] / \mathrm{n}-1$
r is approximately the average of the product of the z-scores for each point
*More complex thus practically, technology needed to find Pearson r
*Measures form - measures linear association between two variables
*"How much"

QCR \& Pearson

*Measures of strength and direction between two variables
*Use the mean lines for x and y to divide the scatterplot into 4 quadrants
*Unitless values between -1 and +1

GPS/CCSS STANDARDS: N/A

Compare and Contract the Median-Median Line and the Least Squares Regression Line (LSRL)

Med-Med
*Resistant to outliers because uses the median
*Divides data into three equal parts, then find the median point in each part
*Count points
*Easier to find (especially by hand); more intuitive
*Doesn't always pass through the mean point
*How many

LSRL

*Non-resistant to outliers because uses the mean
*Minimizes total area of squares of the residuals (distance between the observed y and the predicted y)
*Considering distance from the mean point of x and y
*Residuals: minimizes vertical distances; sum to zero
*Lines goes through

$$
(\bar{x}, \bar{y})
$$

*Practically need technology to find LSRL
*How much

Med-Med \& LSRL

*Linear (straight line) models that represent the data
*Predicts values for a response variable based on linear lines using an explanatory variable
*Both equations for the line are of the form: predicted $y=a+b x$; where a is the y-intercept and b is the slope.

